NANDYAL BANKING COACHING CENTER

Data Comunication

1. Concept of Data Communication

- **Data Communication** is the exchange of data (text, image, audio, video, multimedia) between two or more networked devices.
- Devices must be able to send and receive data over a communication medium (e.g., computer, mobile, laptop, printer, server, switch).

2. Components of Data Communication

- Sender: Device that sends data (computer, mobile, smartwatch, etc.).
- **Receiver**: Device that receives data (computer, printer, mobile, etc.). Sender and receiver are called **nodes**.
- Message: Data or information exchanged (text, numbers, images, audio, etc.).
- **Communication Media**: Path (wired or wireless) through which data travels (e.g., cables, satellite, microwaves).
- **Protocol**: Set of rules followed for successful communication (e.g., Ethernet, HTTP).

3. Measuring Capacity of Communication Media

- **Bandwidth**: Range of frequencies available in a channel (measured in Hertz, Hz).
 - \circ 1 KHz = 1000 Hz, 1 MHz = 1,000,000 Hz.
- Data Transfer Rate (Bit Rate): Number of bits transmitted per second (bps, Kbps, Mbps, Gbps, Tbps).

4. Types of Data Communication

- Simplex: One-way only (e.g., keyboard to computer, controlling home appliances).
- Half-duplex: Both ways, but not at the same time (e.g., walkie-talkie).
- Full-duplex: Both ways, simultaneously (e.g., telephone, mobile).

5. Switching Techniques

- **Circuit Switching**: Dedicated path for the whole communication (e.g., old telephone calls).
- **Packet Switching**: Data split into packets, sent independently, may take different paths (e.g., Internet).

6. Transmission Media

a. Wired (Guided) Media

- Twisted Pair Cable: Two copper wires twisted (UTP, STP), used in LAN and telephone lines.
- Coaxial Cable: Central copper core, insulated and shielded; used for higher frequencies.
- **Optical Fiber**: Data as light; high bandwidth, immune to EMI, expensive, unidirectional, used in backbone networks.

b. Wireless (Unguided) Media

- Data travels as electromagnetic waves (radio, microwave, infrared, visible light).
- Radio Waves: Omnidirectional, long distances, can penetrate walls.
- Microwaves: Unidirectional, needs line-of-sight, used for radar, satellite.
- Infrared: Short distance, cannot penetrate walls, used in remotes, Bluetooth.

7. Wireless Technologies

- Bluetooth: Short-range, connects devices up to 10 meters, uses 2.4 GHz, forms piconet.
- Wireless LAN (Wi-Fi): Standard 802.11, uses access points, allows device mobility within the network.

8. Mobile Telecommunication Technologies

- 1G: Analog voice only.
- 2G: Digital voice, SMS, MMS.
- 3G: Digital voice & data, internet access.
- 4G: Faster data, supports multimedia, wireless broadband.
- 5G: Under development, supports IoT, machine-to-machine communication, ultra-fast data.

9. Protocols

- **Purpose**: Flow control, access control, addressing, error handling, packet arrangement.
- HTTP: Accesses World Wide Web, client-server model.
- **FTP**: Transfers files between machines.
- **PPP**: Direct link between two devices.
- **SMTP**: Email delivery protocol.
- **TCP/IP**: Foundation of the Internet, packet-based communication, ensures delivery and sequencing.

Question and Answers

- **1. Q: Device sending data**
- A: Sender
- 2. Q: Device receiving data
- A: Receiver
- 3. Q: Data transfer path
- A: Transmission media
- 4. Q: Rules for communication
- A: Protocol
- 5. Q: Range of channel frequencies
- A: Bandwidth
- 6. Q: Data transfer rate unit
- A: bps (bits/sec)
- 7. Q: One-way communication
- A: Simplex
- 8. Q: Two-way, not simultaneous communication
- A: Half-duplex
- 9. Q: Two-way, simultaneous communication
- A: Full-duplex
- 10. Q: Dedicated path switching
- A: Circuit switching
- 11. Q: Packet-based switching
- A: Packet switching
- 12. Q: Medium using copper twisted wires
- A: Twisted pair
- 13. Q: Medium using central copper core
- A: Coaxial cable
- 14. Q: Medium using glass, transmits light
- A: Optical fiber
- 15. Q: Omnidirectional wireless wave
- A: Radio waves
- 16. Q: Unidirectional, line-of-sight wave
- A: Microwaves
- 17. Q: Short-range, device-to-device wireless
- A: Infrared
- 18. Q: Bluetooth frequency band
- A: 2.4 GHz
- 19. Q: Wireless LAN standard
- A: 802.11 (Wi-Fi)
- 20. Q: First generation mobile network
- A:1G

21. Q: Email protocol A: SMTP 22. Q: Web browsing protocol A: HTTP 23. Q: File transfer protocol A: FTP 24. Q: Internet foundational protocol A: TCP/IP 25. Q: Protocol for direct link A: PPP 26. Q: Unit of frequency A: Hertz (Hz) 27. Q: Frequency range of radio waves A: 3 KHz - 1 GHz 28. O: Full form of SMS A: Short Message Service 29. O: Full form of MMS A: Multimedia Messaging Service 30. Q: Twisted-pair cable used in LANs A: UTP/STP 31. Q: Number of devices in a Bluetooth piconet (max) A:255 32. Q: Highest data speed mobile generation A:5G 33. O: Protocol for mail transfer A: SMTP 34. Q: Protocol for the web A: HTTP 35. Q: Protocol for file transfer A: FTP **36. Q**: Unit: 1 Gbps = ? Mbps A: 1024 37. Q: Range of electromagnetic spectrum for wireless A: 3 KHz - 900 THz 38. Q: Protocol for reliable, sequenced data delivery A: TCP 39.Q. What is data communication and what are its main components? A: Data communication is the exchange of data (such as text, audio, video, images) between two or more devices over a network. The main components are: 1. Sender (transmits data)

- 2. Receiver (accepts data)
- 3. Message (the information being exchanged)
- 4. Communication media (path for data transfer, wired/wireless)
- 5. Protocol (rules for data transmission).

40. Q. Differentiate between simplex, half-duplex, and full-duplex communication with examples. A:

- Simplex: Data flows in only one direction (e.g., keyboard to computer).
- Half-duplex: Data can flow both ways, but not at the same time (e.g., walkie-talkies).
- Full-duplex: Data can flow simultaneously in both directions (e.g., telephone conversation).

NANDYAL BANKING COACHING CENTER NGO's Colony, Nandyal - 518501. Ph : 7416206879

41. Q. What is bandwidth, and how does it affect data transmission?

A: Bandwidth is the range of frequencies available for data transmission in a communication channel, measured in Hertz (Hz). Higher bandwidth allows more data to be transmitted per second, increasing the speed and capacity of data communication.

42. Q. Explain the difference between circuit switching and packet switching.

- A:
 - **Circuit Switching:** Establishes a dedicated communication path for the entire duration of the session (used in traditional telephone networks).
 - **Packet Switching:** Divides data into packets, which are sent independently and may take different routes; efficient and commonly used in computer networks and the Internet.

43. Q. What are the main types of transmission media? Give one example for each. A:

- Wired (Guided) Media: Physical cables such as twisted pair cable (used in LANs), coaxial cable (used for TV), and optical fiber (used for high-speed backbone networks).
- Wireless (Unguided) Media: Electromagnetic waves like radio waves (FM radio), microwaves (satellite), and infrared (remote controls).

44. Q. List and explain three key wireless technologies used in data communication.

- A:
- **Bluetooth:** Short-range wireless technology for connecting devices within 10 meters (e.g., headphones, keyboards).
- Wi-Fi (802.11): Wireless LAN technology providing internet connectivity within a specific area using access points.
- Infrared: Short-range, line-of-sight technology used in remote controls and some device communications.

45. Q. What are the generations of mobile telecommunication, and what does each offer? A:

- 1G: Analog voice communication only.
- 2G: Digital voice, text messaging (SMS), and MMS.
- 3G: Digital voice and high-speed data for internet access.
- 4G: High-speed data, supports video streaming and broadband internet.
- 5G: Ultra-fast data, IoT support, low latency (under development).

46. Q. What is the role of protocols in data communication? Name two examples and their use. A: Protocols define rules for data transmission, addressing, error detection, flow control, and packet arrangement.

Examples:

- HTTP: Used for web browsing (accessing websites).
- **SMTP:** Used for sending and receiving emails.

47. Q. What is the difference between bandwidth and data transfer rate (bit rate)? A:

- **Bandwidth:** Range of frequencies that a communication channel can transmit (Hz).
- Data transfer rate (bit rate): Number of bits transmitted per second (bps, Kbps, Mbps, etc.). Higher bandwidth often results in a higher data transfer rate.

48. Q. How does optical fiber transmission differ from copper-based cables?

A: Optical fiber transmits data as pulses of light through glass or plastic, offering high speed, large

bandwidth, and immunity to electromagnetic interference. Copper-based cables (twisted pair, coaxial) use electrical signals, are slower, have lower bandwidth, and are more prone to interference.

49. Q. What is a protocol suite? Give one example and its significance.

A: A protocol suite is a collection of protocols that work together to provide complete network functionality.

Example: **TCP/IP suite**, which powers the Internet by handling addressing, routing, transmission, and error detection.

50. Q. What is a piconet in Bluetooth communication?

A: A piconet is a small network created using Bluetooth, where one device acts as a master and up to seven active devices act as slaves; up to 255 devices can be inactive participants.

51. Q. Describe the function of the SMTP protocol.

A: SMTP (Simple Mail Transfer Protocol) is used to transfer electronic mail (email) messages between mail servers and from client to server, ensuring reliable delivery of email.

52. Q. Name and briefly describe two error control techniques in data communication.

A: Parity Check: Adds a parity bit to detect single-bit errors in transmitted data.

• **Checksum:** A calculated value based on the data, sent along with the message to verify integrity at the receiver.

53. Q. What is the basic difference between Wi-Fi and Bluetooth?

A: Wi-Fi is designed for wireless local area networking (covering larger areas, higher speeds, and more devices), while Bluetooth is intended for short-range device-to-device connections, typically within a 10-meter range.